Tag Archives: science literacy

Working towards a critical and consequential science literacy

With the ever-increasing (indeed, strengthening) inequities in science education (particularly along race and class lines), alongside the rise in the anti-science climate in the US, I suggest that we might re-think how we frame “science literacy” in the science education teaching and research communities. The recent election is a reminder that these joint issues are not going away, but only increasing. The Next Generation Science Standards simply do not go far enough in challenging access, opportunity, and engagement with science in ways that connect with and matter to people across our communities, nation and globe. Below I present some conjectures to “think with” that connect an equity perspective (who has access to STEM and why/how) and a global sustainability perspective (e.g., the need to push back against the anti-science climate).

  1. Current views of science literacy, as outlined in the NGSS and which focus on mastering disciplinary knowledge and practices, have kept science in a separate “elitist” domain, closing down symbolic access and opportunity. These views do not account for the knowledges and practices necessary for taking action with science in ways that are critical and connected to community needs or to becoming civically engaged with/through science.
  1. More critical and consequential forms of science literacy are needed. Critical and Consequential forms of science literacy attend to how learning and engagement in science is a) rooted in the history and geographies of young people’s lives in ways that b) value the connections they make among science, community and broader social issues in pursuit of c) transformative outcomes, such as action taking through science, and shifting power dynamics regarding who can access and take action in science and what this looks like.
  1. Critical and consequential forms of science literacy involve more than mastering the knowledge and practices of science (as described in the NGSS), (although developing such mastery is an integral aspect, see conjecture #4). They involve developing approaches to leveraging and hybridizing other forms expertise (e.g., community knowledge, engaging with others, interdisciplinary problems) with the knowledge & practice of science as individuals seek to engage the world meaningfully. Without taking into account how people (especially those from historically marginalized backgrounds in STEM) take up science as a part of their discourse and practice in the world, then science literacy is ultimately defined as a separate culture, community, and power.
  1. Pathways to critical and consequential forms of science literacy are iterative and adaptive. That is, deepening knowledge in one domain (e.g., community) can lead to deepening knowledge in another (e.g., science), in generative ways, leading to new forms of practice & knowledge not a part of the standard curriculum.

In a previous blogpost, Christina wrote about the importance of conscientization in teaching and learning science. I re-iterate that here, reminding us that critical and consequential science literacy, as implied in the four conjectures above, involves reading the world and reading the word (Freire, 1973). We must work together to critically reflect upon science and our world in order to take action and transform it – this is the heart of science literacy.

 

Collective Science Literacy

Collective STEM literacy: Pushing us all forward
Written by Sarah Keenan

We usually think of literacy as an individual competence – whether it has to do with our ability to read and write or to understand and apply scientific concepts. Scientific literacy, and STEM literacy more broadly, is the ability to make sense of the science in our world; but how does this develop? Sense-making, knowledge about and interaction with scientific concepts happens constantly – beyond the walls of school, beyond books, and definitely extending beyond adult authority figures who hold the “right” answers. This kind of literacy learning is a social and collective act: collaboration with peers helps youth decide what counts as important knowledge and gives them the opportunity to scaffold each others’ growth, as their individual strengths and understandings combine to develop a strong, collective STEM literacy.

In Making4Change, youth take action on community problems that hold meaning for them, engineering and designing solutions to these problems with an eye for green energy technologies. By exploring the ways in which our community culture shapes the nature of problems, the STEM literacy of the youth in this program is tapped into a community need. This gives them a platform to highlight their own STEM literacies beyond what might be recognized in school, and to challenge existing solutions.

Every project in M4C is shaped by the collective STEM literacy of the groups – every participant influences the direction of the project. By developing solutions with a group, individual competencies needed to achieve the goal of the project are identified and unite youth by giving them each a chance to share their STEM abilities. Each year we find students position themselves as experts in certain STEM literacies (for example: soldering, light bulb energy usage, etc.) in such a way that their peers can take advantage of this knowledge, building their individual STEM literacy and while contributing back to the collective literacy and ability of the group.

A lot of time our time in M4C is spent in groups, with youth members leading and mentors giving advice to help develop the collective STEM abilities of the group. For the most part our sessions take place in one room, which allows for a crossing of boundaries between projects, so youth are able to share skills and knowledge across different groups. The “expert feedback” days are an opportunity to expand the collective nature of this literacy, as youth present their inventions to professionals, receive their feedback and use outside expertise to inform the direction of their project and push their own abilities.

M4C provides a place where STEM is connected with the daily lives of youth, legitimizing their interests and abilities, giving them a platform to showcase their expertise and collaborate with their peers. As these youth frame STEM as useful to themselves and their projects, individual abilities build a collective literacy that pushes every person’s ability to act as an agent for the public good.